Nucleated erythrocytes – a new experimental cell model for assessing in vitro toxicity, ecotoxicity and to determine the safety of fresh fish products. A review

Nucleated erythrocytes – a new experimental cell model for assessing in vitro toxicity, ecotoxicity and to determine the safety of fresh fish products. A review

This is an automatically generated default intro template – please do not edit.


General information


Title: Nucleated erythrocytes – a new experimental cell model for assessing in vitro toxicity, ecotoxicity and to determine the safety of fresh fish products. A review
Meta keywords:
Meta description:

Images information


Images path absolute: /home/studia/public_html/v15/images/stories/com_form2content/p3/f87
Images path relative: com_form2content/p3/f87
Thumbs path absolute:
Thumbs path relative:

Fields information


Article_Title: Nucleated erythrocytes – a new experimental cell model for assessing in vitro toxicity, ecotoxicity and to determine the safety of fresh fish products. A review
Authors: Daniela Bratosin1,2*, Alexandrina Rugina1, Ana-Maria Gheorghe1, Iulian Stana2, Violeta Turcus2, Eugenia Fagadar3, Aurel Ardelean2
Affiliation: 1 National Institute of Biological Science Research & Development (INCDSB), Bucharest, Romania
2 ”Vasile Goldis” Western University of Arad, Faculty of Natural Sciences, Arad, Romania
3 Romanian Academy Chemistry Institute from Timisoara, Romania
Abstract: The human activities have a negative impact to the environment, consisting in the water contamination with toxic products, heavy metals or with xenobiotic substances. Manufactured nanomaterials (nanoparticles, nanotubes, nanosheets and nanowires) have recent applications in drug delivery, medical devices, cosmetics, chemical catalysts, optoelectronics, electronics and magnetics. Some nanomaterials have been found to be toxic to humans and other organisms either upon contact or after persistent environmental exposure. In present, the measurements of the pollution degree are made with two methods: phisyco-chemical methods and ecotoxicological test (bioassay or environmental biosensors). Our results indicate that flow cytometric analysis of nucleated red blood cells viability using calcein-AM and cell death discrimination could provide a rapid and accurate experimental cellular model for effectively screening and evaluating biological responses for in vitro nanotoxicology and can be used in ecotoxicology as bioassays for the ecological monitoring of aquatic environment. In the some time, our results indicate that the use of nucleated erythocytes could be potentially useful for the development of rapid and low cost safety tests to assess fisheries product quality.
Keywords: nucleated erythrocytes, toxicity, ecotoxicology, pollutants, nanomaterials, apoptosis, flow cytometry
References: Akerman, M.A., Chan, W.C.W., Laakkonen, P., Bhatia,
S.N., Ruoslahti, E., Nanocrystal targeting in vivo.
Proc. Natl. Acad. Sci. 99, 12617–12621, 2002
Altman SA, Randers L, Rao G, Comparison of trypan
blue dye exclusion and fluorometric assays
for mammalian cell viability determinations,
Biotechnol. Prog. 9, 6, 671-674, 1993
ASTM E 2456-06 „Terminology for Nanotechnology”
ASTM international, 2006
Bermudez E, Mangum JB, Wong BA, Asgharian B, Hext
PM, Warheit DB, Everitt JI, Pulmonary responses
of mice, rats, and hamsters to subchronic inhalation
of ultrafine titanium dioxide particles, Toxicol Sci.,
77, 347-57, 2004
Borenfreund E, Puerner JA, Toxicity determined in
vitro by morphological alterations and neutral red
absorption, Toxicol Lett., 24, 119-24, 1985
Bottini M, Bruckner S, Nika K, Bottini N, Bellucci S,
Magrini A, Bergamaschi A, Mustelin T, Multiwalled
carbon nanotubes induce T lymphocyte
apoptosis, Toxicol. Lett., 160, 121-126, 2006
Bratosin D, Palii C, Mitrofan L, Estaquier J, Montreuil J,
Novel fluorescence assay using Calcein-AM for the
determination of human erythrocyte viability and
aging, Cytometry 66A , 78–84, 2005
Bratosin D, Estaquier J, Slomianny C, Tissier J-P,
Quatannes B, Bulai T, Mitrofan L, Marinescu A,
Trandaburu I, Ameisen J-C, Montreuil J, On the
evolution of erythrocyte programmed cell death :
apoptosis of Rana esculenta nucleated red blood cells involves cysteine proteinase activation and
mitochondrion permeabilization, Biochimie, 86, 3,
183-93, 2004
Bratosin D et al., Flow cytometric measurement of
reactive oxygen species produced in aluminium
mediated-apoptosis of Rana nucleated erythrocytes,
Romanian Biological Sciences, 2007
Bratosin D, Fagadar-Cosma E., Gheorghe A-M, Rugină
A., Ardelean A., Montreuil J, Marinescu Al. G.,
In vitro toxi- and eco-toxicological assessment of
porphyrine nanomaterials by flow cytometry using
nucleated erythrocytes, Carpathian Journal of Earth
and Environmental Sciences, 6, 2, 225 – 234 , 2011
Colvin VL, The potential environmental impact of
engineered nanomaterials, Nat. Biotechnol, 21,
1166–70, 2003
Crosera M, Bovenzi M, Maina G, Adami G, Zanette C,
Florio C, Larese FF, Nanoparticle dermal absorption
and toxicity: a review of the literature, Int Arch
Occup Environ Health, 82, 1043-1055, 2009
Cui D, Tian F, Ozkan CS, Wang M, Gao H., Effect of
single wall carbon nanotubes on human HEK293
cells, Toxicol. Lett., 15, 155, 73-85, 2005
Fairbairn DW, Olive PL, O’Neill KL, The Comet Assay:
A comprehensive review. Mutat. Res., 339, 37-59,
1995
Fiorito S, Serafino A, Andreola F, Togna A, Togna
G, Toxicity and biocompatibility of carbon
nanoparticles, J. Nanosci. Nanotechnol., 6, 591-
599. Review, 2006
Flahaut E, Durrieu MC, Remy-Zholgadri M, Bareille
R, Baquey Ch, Investigation of the cytotoxicity of
CCVD carbon nanotubes towards human umbilical
vein endothelial cells Carbon, 44, 1093-1099, 2006
Goodman CM, McCusker CD, Yilmaz T, Rotello VM,
Toxicity of gold nanoparticles functionalized with
cationic and anionic side chains, Bioconjug. Chem.,
15, 897-900, 2004
Griffitt RJ, Weil R, Hyndman KA, Denslow ND, Powers
K, Taylor D, Barber DS, David S, 2007, Exposure
to copper nanoparticles causes gill injury and acute
lethality in zebrafish (Danio rerio), Environ. Sci.
Technol. 41, 8178-8186, 2007
Gross, M., Travels to the Nanoworld: Miniature
Machinery in Nature and Technology. Plenum
Trade, New York. p. 254, 1999.
Hassellöv M, Readman JW, Ranville JF, Tiede K,
Nanoparticle analysis and characterization
methodologies in environmental risk assessment of
engineered nanoparticles, Ecotoxicology, 17, 344-
361, 2008
Howard CV, Small particles-big problems, Int. Lab.
News, 34, 28-29, 2004
Jia G, Wang H, Yan L, Wang X, Pei R, Yan T, Zhao Y,
Guo X., Cytotoxicity of carbon nanomaterials:
single-wall nanotube, multi-wall nanotube, and
fullerene, Environ. Sci. Technol., 39, 1378-83, 2005
Jia G, Wang H, Yan L, Wang X, Pei R, Yan T, Zhao Y,
Guo X.Kim D, El-Shall H, Dennis D, Morey T,
Interaction of PLGA nanoparticles with human
blood constituents, Colloids Surf., B40, 83. J, 2005
Kim D., El-Shall, H., Dennis, D., Morey, T., Interaction of
PLGA nanoparticles with human blood constituents.
Colloids Surf. B 40, 83. J, 2005
Kostarelos K, Lacerda L, Pastorin G, Wu W, Wieckowski
S, Luangsivilay J, Godefroy S, Pantarotto D, Briand
JP, Muller S, Prato M, Bianco A., Cellular uptake of
functionalized carbon nanotubes is independent of
functional group and cell type, Nat. Nanotechnol. 2,
108-13, 2007
Kostarelos K, Lacerda L, Pastorin G, Wu W, Wieckowski
S, Luangsivilay J, Godefroy S, Pantarotto D, Briand
JP, Muller S, Prato M, Bianco A., Lewinski N,
Colvin V, Drezek R., Cytotoxicity of nanoparticles,
Small, 4, 26-49. Review, 2008
Lewinski N, Colvin V, Drezek R, Citotoxicity of
Nanoparticles, Small, 4, 26-49, 2008
Li SQ, Zhu RR, Zhu H, Xue M, Sun XY, Yao SD,
Wang SL., Nanotoxicity of TiO(2) nanoparticles to
erythrocyte in vitro, Food Chem. Toxicol., 46, 3626-
3631, 2008
Maynard AD, Nanotechnology: Research Strategy for
Adressing Risk Washington DC, Woodrow Wilson
International Center for Scholars, 2006
Monteiro–Riviere NA, Inman AO, Challenges for
assessing carbon nanomaterial toxicity to the skin,
Carbon, 44, 1070–1078, 2006
Moore MN, Depledge MH, Readman JW, Leonard
P, An integrated biomarker-based strategy for
ecotoxicological evaluation of risk in environmental
management, Mutat Res 552, 247–68, 2004
Moore MN, Do nanoparticles present ecotoxicological
risks for the health of the aquatic environment?,
Environment International 32, 967-976, 2006
Muller J, Huaux F, Moreau N, Misson P, Heilier JF,
Delos M, Arras M, Fonseca A, Nagy JB, Lison D,
Respiratory toxicity of multi-wall carbon nanotube.,
Toxicol. Appl. Pharmacol. 207, 221-231, 2005
Oberdörster E, Manufactured nanomaterials (fullerenes,
C60) induce oxidative stress in the brain of juvenile
largemouth bass, Environ. Health Perspect., 113,
823-839, 2004
Oberdörster G, Oberdörster E, Oberdörster J.,
Nanotoxicology: an emerging discipline evolving
from studies of ultrafine particle, Environ Health
Perspect 113, 823-839, 2005
Rothen-Rutishauser BM, Schurch S, Haenni B, Kapp
N, Gehr P, Interaction of fine and nanoparticles
with red blood cells visualized with advanced
microscopic technicques, Environ. Sci., Technol.,
40, 4353 – 4359, 2006
Sayes CM, Warheit DB, Characterization of nanomaterials
for toxicity assessment, Wiley Interdiscip. Rev.
Nanomed. Nanobiotechnol. 1, 660-670. Review,
2004
Thomas CL, Navid S, Robert DT, Titanium dioxide (P25)
produces reactive oxygen species in immortalized
brain microglia (BV2); Implication for nanoparticle
neurotoxicity, Environ. Sci. Technol., 40, 4346-
4352, 2006
Tian FR, Cui D, Schwarz H, Estrada GG, Kobayashi
H., Cytotoxicity of single-wall carbon nanotubes
on human fibroblasts, Toxicol. In vitro, 20, 1202-
1212, 2006
Usenko CY, Harper SL, Tanguay RL, In vivo evaluation
of carbon fullerene toxicity using embryonic
zebrafish, Carbon45, 1891-1898, 2007
Wang JX, Zhou GQ, Chen CY, Yu HW, Wang TC, Ma
YM, Jia G, Gao YX, Li B, Sun J, Li YF, Zhao
YL, Chai ZF, Acute toxicity and biodistribution of
different sized titanium dioxide particles in mice
after oral administration, Toxicol. Lett., 168, 176-
185, 2007
Warheit DB, Webb TR, Reed KL, Frerichs S, Sayes
CM, Acute toxicity and biodistribution of different
sized titanium di8oxide particles in mice after oral
administration, Toxicol. Lett., 168, 176-185 , 2007.
Zhu S, Oberdörster E, Haasch ML, Toxicity of an
engineered nanoparticle (fullerenes, C60)in two
aquatic species, Daphnia and fathead minnow, Mar.
Environ. Res., 62, 55-59, 2006
Read_full_article: pdf/21-2011/21-s1-2011/SU21-s1-2011Bratosin4.pdf
Correspondence: Bratosin D.

Read full article
Article Title: Nucleated erythrocytes – a new experimental cell model for assessing in vitro toxicity, ecotoxicity and to determine the safety of fresh fish products. A review
Authors: Daniela Bratosin1,2*, Alexandrina Rugina1, Ana-Maria Gheorghe1, Iulian Stana2, Violeta Turcus2, Eugenia Fagadar3, Aurel Ardelean2
Affiliation: 1 National Institute of Biological Science Research & Development (INCDSB), Bucharest, Romania
2 ”Vasile Goldis” Western University of Arad, Faculty of Natural Sciences, Arad, Romania
3 Romanian Academy Chemistry Institute from Timisoara, Romania
Abstract: The human activities have a negative impact to the environment, consisting in the water contamination with toxic products, heavy metals or with xenobiotic substances. Manufactured nanomaterials (nanoparticles, nanotubes, nanosheets and nanowires) have recent applications in drug delivery, medical devices, cosmetics, chemical catalysts, optoelectronics, electronics and magnetics. Some nanomaterials have been found to be toxic to humans and other organisms either upon contact or after persistent environmental exposure. In present, the measurements of the pollution degree are made with two methods: phisyco-chemical methods and ecotoxicological test (bioassay or environmental biosensors). Our results indicate that flow cytometric analysis of nucleated red blood cells viability using calcein-AM and cell death discrimination could provide a rapid and accurate experimental cellular model for effectively screening and evaluating biological responses for in vitro nanotoxicology and can be used in ecotoxicology as bioassays for the ecological monitoring of aquatic environment. In the some time, our results indicate that the use of nucleated erythocytes could be potentially useful for the development of rapid and low cost safety tests to assess fisheries product quality.
Keywords: nucleated erythrocytes, toxicity, ecotoxicology, pollutants, nanomaterials, apoptosis, flow cytometry
References: Akerman, M.A., Chan, W.C.W., Laakkonen, P., Bhatia,
S.N., Ruoslahti, E., Nanocrystal targeting in vivo.
Proc. Natl. Acad. Sci. 99, 12617–12621, 2002
Altman SA, Randers L, Rao G, Comparison of trypan
blue dye exclusion and fluorometric assays
for mammalian cell viability determinations,
Biotechnol. Prog. 9, 6, 671-674, 1993
ASTM E 2456-06 „Terminology for Nanotechnology”
ASTM international, 2006
Bermudez E, Mangum JB, Wong BA, Asgharian B, Hext
PM, Warheit DB, Everitt JI, Pulmonary responses
of mice, rats, and hamsters to subchronic inhalation
of ultrafine titanium dioxide particles, Toxicol Sci.,
77, 347-57, 2004
Borenfreund E, Puerner JA, Toxicity determined in
vitro by morphological alterations and neutral red
absorption, Toxicol Lett., 24, 119-24, 1985
Bottini M, Bruckner S, Nika K, Bottini N, Bellucci S,
Magrini A, Bergamaschi A, Mustelin T, Multiwalled
carbon nanotubes induce T lymphocyte
apoptosis, Toxicol. Lett., 160, 121-126, 2006
Bratosin D, Palii C, Mitrofan L, Estaquier J, Montreuil J,
Novel fluorescence assay using Calcein-AM for the
determination of human erythrocyte viability and
aging, Cytometry 66A , 78–84, 2005
Bratosin D, Estaquier J, Slomianny C, Tissier J-P,
Quatannes B, Bulai T, Mitrofan L, Marinescu A,
Trandaburu I, Ameisen J-C, Montreuil J, On the
evolution of erythrocyte programmed cell death :
apoptosis of Rana esculenta nucleated red blood cells involves cysteine proteinase activation and
mitochondrion permeabilization, Biochimie, 86, 3,
183-93, 2004
Bratosin D et al., Flow cytometric measurement of
reactive oxygen species produced in aluminium
mediated-apoptosis of Rana nucleated erythrocytes,
Romanian Biological Sciences, 2007
Bratosin D, Fagadar-Cosma E., Gheorghe A-M, Rugină
A., Ardelean A., Montreuil J, Marinescu Al. G.,
In vitro toxi- and eco-toxicological assessment of
porphyrine nanomaterials by flow cytometry using
nucleated erythrocytes, Carpathian Journal of Earth
and Environmental Sciences, 6, 2, 225 – 234 , 2011
Colvin VL, The potential environmental impact of
engineered nanomaterials, Nat. Biotechnol, 21,
1166–70, 2003
Crosera M, Bovenzi M, Maina G, Adami G, Zanette C,
Florio C, Larese FF, Nanoparticle dermal absorption
and toxicity: a review of the literature, Int Arch
Occup Environ Health, 82, 1043-1055, 2009
Cui D, Tian F, Ozkan CS, Wang M, Gao H., Effect of
single wall carbon nanotubes on human HEK293
cells, Toxicol. Lett., 15, 155, 73-85, 2005
Fairbairn DW, Olive PL, O’Neill KL, The Comet Assay:
A comprehensive review. Mutat. Res., 339, 37-59,
1995
Fiorito S, Serafino A, Andreola F, Togna A, Togna
G, Toxicity and biocompatibility of carbon
nanoparticles, J. Nanosci. Nanotechnol., 6, 591-
599. Review, 2006
Flahaut E, Durrieu MC, Remy-Zholgadri M, Bareille
R, Baquey Ch, Investigation of the cytotoxicity of
CCVD carbon nanotubes towards human umbilical
vein endothelial cells Carbon, 44, 1093-1099, 2006
Goodman CM, McCusker CD, Yilmaz T, Rotello VM,
Toxicity of gold nanoparticles functionalized with
cationic and anionic side chains, Bioconjug. Chem.,
15, 897-900, 2004
Griffitt RJ, Weil R, Hyndman KA, Denslow ND, Powers
K, Taylor D, Barber DS, David S, 2007, Exposure
to copper nanoparticles causes gill injury and acute
lethality in zebrafish (Danio rerio), Environ. Sci.
Technol. 41, 8178-8186, 2007
Gross, M., Travels to the Nanoworld: Miniature
Machinery in Nature and Technology. Plenum
Trade, New York. p. 254, 1999.
Hassellöv M, Readman JW, Ranville JF, Tiede K,
Nanoparticle analysis and characterization
methodologies in environmental risk assessment of
engineered nanoparticles, Ecotoxicology, 17, 344-
361, 2008
Howard CV, Small particles-big problems, Int. Lab.
News, 34, 28-29, 2004
Jia G, Wang H, Yan L, Wang X, Pei R, Yan T, Zhao Y,
Guo X., Cytotoxicity of carbon nanomaterials:
single-wall nanotube, multi-wall nanotube, and
fullerene, Environ. Sci. Technol., 39, 1378-83, 2005
Jia G, Wang H, Yan L, Wang X, Pei R, Yan T, Zhao Y,
Guo X.Kim D, El-Shall H, Dennis D, Morey T,
Interaction of PLGA nanoparticles with human
blood constituents, Colloids Surf., B40, 83. J, 2005
Kim D., El-Shall, H., Dennis, D., Morey, T., Interaction of
PLGA nanoparticles with human blood constituents.
Colloids Surf. B 40, 83. J, 2005
Kostarelos K, Lacerda L, Pastorin G, Wu W, Wieckowski
S, Luangsivilay J, Godefroy S, Pantarotto D, Briand
JP, Muller S, Prato M, Bianco A., Cellular uptake of
functionalized carbon nanotubes is independent of
functional group and cell type, Nat. Nanotechnol. 2,
108-13, 2007
Kostarelos K, Lacerda L, Pastorin G, Wu W, Wieckowski
S, Luangsivilay J, Godefroy S, Pantarotto D, Briand
JP, Muller S, Prato M, Bianco A., Lewinski N,
Colvin V, Drezek R., Cytotoxicity of nanoparticles,
Small, 4, 26-49. Review, 2008
Lewinski N, Colvin V, Drezek R, Citotoxicity of
Nanoparticles, Small, 4, 26-49, 2008
Li SQ, Zhu RR, Zhu H, Xue M, Sun XY, Yao SD,
Wang SL., Nanotoxicity of TiO(2) nanoparticles to
erythrocyte in vitro, Food Chem. Toxicol., 46, 3626-
3631, 2008
Maynard AD, Nanotechnology: Research Strategy for
Adressing Risk Washington DC, Woodrow Wilson
International Center for Scholars, 2006
Monteiro–Riviere NA, Inman AO, Challenges for
assessing carbon nanomaterial toxicity to the skin,
Carbon, 44, 1070–1078, 2006
Moore MN, Depledge MH, Readman JW, Leonard
P, An integrated biomarker-based strategy for
ecotoxicological evaluation of risk in environmental
management, Mutat Res 552, 247–68, 2004
Moore MN, Do nanoparticles present ecotoxicological
risks for the health of the aquatic environment?,
Environment International 32, 967-976, 2006
Muller J, Huaux F, Moreau N, Misson P, Heilier JF,
Delos M, Arras M, Fonseca A, Nagy JB, Lison D,
Respiratory toxicity of multi-wall carbon nanotube.,
Toxicol. Appl. Pharmacol. 207, 221-231, 2005
Oberdörster E, Manufactured nanomaterials (fullerenes,
C60) induce oxidative stress in the brain of juvenile
largemouth bass, Environ. Health Perspect., 113,
823-839, 2004
Oberdörster G, Oberdörster E, Oberdörster J.,
Nanotoxicology: an emerging discipline evolving
from studies of ultrafine particle, Environ Health
Perspect 113, 823-839, 2005
Rothen-Rutishauser BM, Schurch S, Haenni B, Kapp
N, Gehr P, Interaction of fine and nanoparticles
with red blood cells visualized with advanced
microscopic technicques, Environ. Sci., Technol.,
40, 4353 – 4359, 2006
Sayes CM, Warheit DB, Characterization of nanomaterials
for toxicity assessment, Wiley Interdiscip. Rev.
Nanomed. Nanobiotechnol. 1, 660-670. Review,
2004
Thomas CL, Navid S, Robert DT, Titanium dioxide (P25)
produces reactive oxygen species in immortalized
brain microglia (BV2); Implication for nanoparticle
neurotoxicity, Environ. Sci. Technol., 40, 4346-
4352, 2006
Tian FR, Cui D, Schwarz H, Estrada GG, Kobayashi
H., Cytotoxicity of single-wall carbon nanotubes
on human fibroblasts, Toxicol. In vitro, 20, 1202-
1212, 2006
Usenko CY, Harper SL, Tanguay RL, In vivo evaluation
of carbon fullerene toxicity using embryonic
zebrafish, Carbon45, 1891-1898, 2007
Wang JX, Zhou GQ, Chen CY, Yu HW, Wang TC, Ma
YM, Jia G, Gao YX, Li B, Sun J, Li YF, Zhao
YL, Chai ZF, Acute toxicity and biodistribution of
different sized titanium dioxide particles in mice
after oral administration, Toxicol. Lett., 168, 176-
185, 2007
Warheit DB, Webb TR, Reed KL, Frerichs S, Sayes
CM, Acute toxicity and biodistribution of different
sized titanium di8oxide particles in mice after oral
administration, Toxicol. Lett., 168, 176-185 , 2007.
Zhu S, Oberdörster E, Haasch ML, Toxicity of an
engineered nanoparticle (fullerenes, C60)in two
aquatic species, Daphnia and fathead minnow, Mar.
Environ. Res., 62, 55-59, 2006
*Correspondence: Bratosin D.