Nucleated erythrocytes – a new experimental cell model for assessing in vitro toxicity, ecotoxicity and to determine the safety of fresh fish products. A review
September 17, 2011
Nucleated erythrocytes – a new experimental cell model for assessing in vitro toxicity, ecotoxicity and to determine the safety of fresh fish products. A review
This is an automatically generated default intro template – please do not edit.
General information |
|
Title: | Nucleated erythrocytes – a new experimental cell model for assessing in vitro toxicity, ecotoxicity and to determine the safety of fresh fish products. A review |
Meta keywords: | |
Meta description: | |
Images information |
|
Images path absolute: | /home/studia/public_html/v15/images/stories/com_form2content/p3/f87 |
Images path relative: | com_form2content/p3/f87 |
Thumbs path absolute: | |
Thumbs path relative: | |
Fields information |
|
Article_Title: | Nucleated erythrocytes – a new experimental cell model for assessing in vitro toxicity, ecotoxicity and to determine the safety of fresh fish products. A review |
Authors: | Daniela Bratosin1,2*, Alexandrina Rugina1, Ana-Maria Gheorghe1, Iulian Stana2, Violeta Turcus2, Eugenia Fagadar3, Aurel Ardelean2 |
Affiliation: | 1 National Institute of Biological Science Research & Development (INCDSB), Bucharest, Romania 2 ”Vasile Goldis” Western University of Arad, Faculty of Natural Sciences, Arad, Romania 3 Romanian Academy Chemistry Institute from Timisoara, Romania |
Abstract: | The human activities have a negative impact to the environment, consisting in the water contamination with toxic products, heavy metals or with xenobiotic substances. Manufactured nanomaterials (nanoparticles, nanotubes, nanosheets and nanowires) have recent applications in drug delivery, medical devices, cosmetics, chemical catalysts, optoelectronics, electronics and magnetics. Some nanomaterials have been found to be toxic to humans and other organisms either upon contact or after persistent environmental exposure. In present, the measurements of the pollution degree are made with two methods: phisyco-chemical methods and ecotoxicological test (bioassay or environmental biosensors). Our results indicate that flow cytometric analysis of nucleated red blood cells viability using calcein-AM and cell death discrimination could provide a rapid and accurate experimental cellular model for effectively screening and evaluating biological responses for in vitro nanotoxicology and can be used in ecotoxicology as bioassays for the ecological monitoring of aquatic environment. In the some time, our results indicate that the use of nucleated erythocytes could be potentially useful for the development of rapid and low cost safety tests to assess fisheries product quality. |
Keywords: | nucleated erythrocytes, toxicity, ecotoxicology, pollutants, nanomaterials, apoptosis, flow cytometry |
References: | Akerman, M.A., Chan, W.C.W., Laakkonen, P., Bhatia, S.N., Ruoslahti, E., Nanocrystal targeting in vivo. Proc. Natl. Acad. Sci. 99, 12617–12621, 2002 Altman SA, Randers L, Rao G, Comparison of trypan blue dye exclusion and fluorometric assays for mammalian cell viability determinations, Biotechnol. Prog. 9, 6, 671-674, 1993 ASTM E 2456-06 „Terminology for Nanotechnology” ASTM international, 2006 Bermudez E, Mangum JB, Wong BA, Asgharian B, Hext PM, Warheit DB, Everitt JI, Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles, Toxicol Sci., 77, 347-57, 2004 Borenfreund E, Puerner JA, Toxicity determined in vitro by morphological alterations and neutral red absorption, Toxicol Lett., 24, 119-24, 1985 Bottini M, Bruckner S, Nika K, Bottini N, Bellucci S, Magrini A, Bergamaschi A, Mustelin T, Multiwalled carbon nanotubes induce T lymphocyte apoptosis, Toxicol. Lett., 160, 121-126, 2006 Bratosin D, Palii C, Mitrofan L, Estaquier J, Montreuil J, Novel fluorescence assay using Calcein-AM for the determination of human erythrocyte viability and aging, Cytometry 66A , 78–84, 2005 Bratosin D, Estaquier J, Slomianny C, Tissier J-P, Quatannes B, Bulai T, Mitrofan L, Marinescu A, Trandaburu I, Ameisen J-C, Montreuil J, On the evolution of erythrocyte programmed cell death : apoptosis of Rana esculenta nucleated red blood cells involves cysteine proteinase activation and mitochondrion permeabilization, Biochimie, 86, 3, 183-93, 2004 Bratosin D et al., Flow cytometric measurement of reactive oxygen species produced in aluminium mediated-apoptosis of Rana nucleated erythrocytes, Romanian Biological Sciences, 2007 Bratosin D, Fagadar-Cosma E., Gheorghe A-M, Rugină A., Ardelean A., Montreuil J, Marinescu Al. G., In vitro toxi- and eco-toxicological assessment of porphyrine nanomaterials by flow cytometry using nucleated erythrocytes, Carpathian Journal of Earth and Environmental Sciences, 6, 2, 225 – 234 , 2011 Colvin VL, The potential environmental impact of engineered nanomaterials, Nat. Biotechnol, 21, 1166–70, 2003 Crosera M, Bovenzi M, Maina G, Adami G, Zanette C, Florio C, Larese FF, Nanoparticle dermal absorption and toxicity: a review of the literature, Int Arch Occup Environ Health, 82, 1043-1055, 2009 Cui D, Tian F, Ozkan CS, Wang M, Gao H., Effect of single wall carbon nanotubes on human HEK293 cells, Toxicol. Lett., 15, 155, 73-85, 2005 Fairbairn DW, Olive PL, O’Neill KL, The Comet Assay: A comprehensive review. Mutat. Res., 339, 37-59, 1995 Fiorito S, Serafino A, Andreola F, Togna A, Togna G, Toxicity and biocompatibility of carbon nanoparticles, J. Nanosci. Nanotechnol., 6, 591- 599. Review, 2006 Flahaut E, Durrieu MC, Remy-Zholgadri M, Bareille R, Baquey Ch, Investigation of the cytotoxicity of CCVD carbon nanotubes towards human umbilical vein endothelial cells Carbon, 44, 1093-1099, 2006 Goodman CM, McCusker CD, Yilmaz T, Rotello VM, Toxicity of gold nanoparticles functionalized with cationic and anionic side chains, Bioconjug. Chem., 15, 897-900, 2004 Griffitt RJ, Weil R, Hyndman KA, Denslow ND, Powers K, Taylor D, Barber DS, David S, 2007, Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio), Environ. Sci. Technol. 41, 8178-8186, 2007 Gross, M., Travels to the Nanoworld: Miniature Machinery in Nature and Technology. Plenum Trade, New York. p. 254, 1999. Hassellöv M, Readman JW, Ranville JF, Tiede K, Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles, Ecotoxicology, 17, 344- 361, 2008 Howard CV, Small particles-big problems, Int. Lab. News, 34, 28-29, 2004 Jia G, Wang H, Yan L, Wang X, Pei R, Yan T, Zhao Y, Guo X., Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene, Environ. Sci. Technol., 39, 1378-83, 2005 Jia G, Wang H, Yan L, Wang X, Pei R, Yan T, Zhao Y, Guo X.Kim D, El-Shall H, Dennis D, Morey T, Interaction of PLGA nanoparticles with human blood constituents, Colloids Surf., B40, 83. J, 2005 Kim D., El-Shall, H., Dennis, D., Morey, T., Interaction of PLGA nanoparticles with human blood constituents. Colloids Surf. B 40, 83. J, 2005 Kostarelos K, Lacerda L, Pastorin G, Wu W, Wieckowski S, Luangsivilay J, Godefroy S, Pantarotto D, Briand JP, Muller S, Prato M, Bianco A., Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type, Nat. Nanotechnol. 2, 108-13, 2007 Kostarelos K, Lacerda L, Pastorin G, Wu W, Wieckowski S, Luangsivilay J, Godefroy S, Pantarotto D, Briand JP, Muller S, Prato M, Bianco A., Lewinski N, Colvin V, Drezek R., Cytotoxicity of nanoparticles, Small, 4, 26-49. Review, 2008 Lewinski N, Colvin V, Drezek R, Citotoxicity of Nanoparticles, Small, 4, 26-49, 2008 Li SQ, Zhu RR, Zhu H, Xue M, Sun XY, Yao SD, Wang SL., Nanotoxicity of TiO(2) nanoparticles to erythrocyte in vitro, Food Chem. Toxicol., 46, 3626- 3631, 2008 Maynard AD, Nanotechnology: Research Strategy for Adressing Risk Washington DC, Woodrow Wilson International Center for Scholars, 2006 Monteiro–Riviere NA, Inman AO, Challenges for assessing carbon nanomaterial toxicity to the skin, Carbon, 44, 1070–1078, 2006 Moore MN, Depledge MH, Readman JW, Leonard P, An integrated biomarker-based strategy for ecotoxicological evaluation of risk in environmental management, Mutat Res 552, 247–68, 2004 Moore MN, Do nanoparticles present ecotoxicological risks for the health of the aquatic environment?, Environment International 32, 967-976, 2006 Muller J, Huaux F, Moreau N, Misson P, Heilier JF, Delos M, Arras M, Fonseca A, Nagy JB, Lison D, Respiratory toxicity of multi-wall carbon nanotube., Toxicol. Appl. Pharmacol. 207, 221-231, 2005 Oberdörster E, Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass, Environ. Health Perspect., 113, 823-839, 2004 Oberdörster G, Oberdörster E, Oberdörster J., Nanotoxicology: an emerging discipline evolving from studies of ultrafine particle, Environ Health Perspect 113, 823-839, 2005 Rothen-Rutishauser BM, Schurch S, Haenni B, Kapp N, Gehr P, Interaction of fine and nanoparticles with red blood cells visualized with advanced microscopic technicques, Environ. Sci., Technol., 40, 4353 – 4359, 2006 Sayes CM, Warheit DB, Characterization of nanomaterials for toxicity assessment, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1, 660-670. Review, 2004 Thomas CL, Navid S, Robert DT, Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2); Implication for nanoparticle neurotoxicity, Environ. Sci. Technol., 40, 4346- 4352, 2006 Tian FR, Cui D, Schwarz H, Estrada GG, Kobayashi H., Cytotoxicity of single-wall carbon nanotubes on human fibroblasts, Toxicol. In vitro, 20, 1202- 1212, 2006 Usenko CY, Harper SL, Tanguay RL, In vivo evaluation of carbon fullerene toxicity using embryonic zebrafish, Carbon45, 1891-1898, 2007 Wang JX, Zhou GQ, Chen CY, Yu HW, Wang TC, Ma YM, Jia G, Gao YX, Li B, Sun J, Li YF, Zhao YL, Chai ZF, Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration, Toxicol. Lett., 168, 176- 185, 2007 Warheit DB, Webb TR, Reed KL, Frerichs S, Sayes CM, Acute toxicity and biodistribution of different sized titanium di8oxide particles in mice after oral administration, Toxicol. Lett., 168, 176-185 , 2007. Zhu S, Oberdörster E, Haasch ML, Toxicity of an engineered nanoparticle (fullerenes, C60)in two aquatic species, Daphnia and fathead minnow, Mar. Environ. Res., 62, 55-59, 2006 |
Read_full_article: | pdf/21-2011/21-s1-2011/SU21-s1-2011Bratosin4.pdf |
Correspondence: | Bratosin D. |
Read full article | |
Article Title: | Nucleated erythrocytes – a new experimental cell model for assessing in vitro toxicity, ecotoxicity and to determine the safety of fresh fish products. A review |
Authors: | Daniela Bratosin1,2*, Alexandrina Rugina1, Ana-Maria Gheorghe1, Iulian Stana2, Violeta Turcus2, Eugenia Fagadar3, Aurel Ardelean2 |
Affiliation: | 1 National Institute of Biological Science Research & Development (INCDSB), Bucharest, Romania 2 ”Vasile Goldis” Western University of Arad, Faculty of Natural Sciences, Arad, Romania 3 Romanian Academy Chemistry Institute from Timisoara, Romania |
Abstract: | The human activities have a negative impact to the environment, consisting in the water contamination with toxic products, heavy metals or with xenobiotic substances. Manufactured nanomaterials (nanoparticles, nanotubes, nanosheets and nanowires) have recent applications in drug delivery, medical devices, cosmetics, chemical catalysts, optoelectronics, electronics and magnetics. Some nanomaterials have been found to be toxic to humans and other organisms either upon contact or after persistent environmental exposure. In present, the measurements of the pollution degree are made with two methods: phisyco-chemical methods and ecotoxicological test (bioassay or environmental biosensors). Our results indicate that flow cytometric analysis of nucleated red blood cells viability using calcein-AM and cell death discrimination could provide a rapid and accurate experimental cellular model for effectively screening and evaluating biological responses for in vitro nanotoxicology and can be used in ecotoxicology as bioassays for the ecological monitoring of aquatic environment. In the some time, our results indicate that the use of nucleated erythocytes could be potentially useful for the development of rapid and low cost safety tests to assess fisheries product quality. |
Keywords: | nucleated erythrocytes, toxicity, ecotoxicology, pollutants, nanomaterials, apoptosis, flow cytometry |
References: | Akerman, M.A., Chan, W.C.W., Laakkonen, P., Bhatia, S.N., Ruoslahti, E., Nanocrystal targeting in vivo. Proc. Natl. Acad. Sci. 99, 12617–12621, 2002 Altman SA, Randers L, Rao G, Comparison of trypan blue dye exclusion and fluorometric assays for mammalian cell viability determinations, Biotechnol. Prog. 9, 6, 671-674, 1993 ASTM E 2456-06 „Terminology for Nanotechnology” ASTM international, 2006 Bermudez E, Mangum JB, Wong BA, Asgharian B, Hext PM, Warheit DB, Everitt JI, Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles, Toxicol Sci., 77, 347-57, 2004 Borenfreund E, Puerner JA, Toxicity determined in vitro by morphological alterations and neutral red absorption, Toxicol Lett., 24, 119-24, 1985 Bottini M, Bruckner S, Nika K, Bottini N, Bellucci S, Magrini A, Bergamaschi A, Mustelin T, Multiwalled carbon nanotubes induce T lymphocyte apoptosis, Toxicol. Lett., 160, 121-126, 2006 Bratosin D, Palii C, Mitrofan L, Estaquier J, Montreuil J, Novel fluorescence assay using Calcein-AM for the determination of human erythrocyte viability and aging, Cytometry 66A , 78–84, 2005 Bratosin D, Estaquier J, Slomianny C, Tissier J-P, Quatannes B, Bulai T, Mitrofan L, Marinescu A, Trandaburu I, Ameisen J-C, Montreuil J, On the evolution of erythrocyte programmed cell death : apoptosis of Rana esculenta nucleated red blood cells involves cysteine proteinase activation and mitochondrion permeabilization, Biochimie, 86, 3, 183-93, 2004 Bratosin D et al., Flow cytometric measurement of reactive oxygen species produced in aluminium mediated-apoptosis of Rana nucleated erythrocytes, Romanian Biological Sciences, 2007 Bratosin D, Fagadar-Cosma E., Gheorghe A-M, Rugină A., Ardelean A., Montreuil J, Marinescu Al. G., In vitro toxi- and eco-toxicological assessment of porphyrine nanomaterials by flow cytometry using nucleated erythrocytes, Carpathian Journal of Earth and Environmental Sciences, 6, 2, 225 – 234 , 2011 Colvin VL, The potential environmental impact of engineered nanomaterials, Nat. Biotechnol, 21, 1166–70, 2003 Crosera M, Bovenzi M, Maina G, Adami G, Zanette C, Florio C, Larese FF, Nanoparticle dermal absorption and toxicity: a review of the literature, Int Arch Occup Environ Health, 82, 1043-1055, 2009 Cui D, Tian F, Ozkan CS, Wang M, Gao H., Effect of single wall carbon nanotubes on human HEK293 cells, Toxicol. Lett., 15, 155, 73-85, 2005 Fairbairn DW, Olive PL, O’Neill KL, The Comet Assay: A comprehensive review. Mutat. Res., 339, 37-59, 1995 Fiorito S, Serafino A, Andreola F, Togna A, Togna G, Toxicity and biocompatibility of carbon nanoparticles, J. Nanosci. Nanotechnol., 6, 591- 599. Review, 2006 Flahaut E, Durrieu MC, Remy-Zholgadri M, Bareille R, Baquey Ch, Investigation of the cytotoxicity of CCVD carbon nanotubes towards human umbilical vein endothelial cells Carbon, 44, 1093-1099, 2006 Goodman CM, McCusker CD, Yilmaz T, Rotello VM, Toxicity of gold nanoparticles functionalized with cationic and anionic side chains, Bioconjug. Chem., 15, 897-900, 2004 Griffitt RJ, Weil R, Hyndman KA, Denslow ND, Powers K, Taylor D, Barber DS, David S, 2007, Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio), Environ. Sci. Technol. 41, 8178-8186, 2007 Gross, M., Travels to the Nanoworld: Miniature Machinery in Nature and Technology. Plenum Trade, New York. p. 254, 1999. Hassellöv M, Readman JW, Ranville JF, Tiede K, Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles, Ecotoxicology, 17, 344- 361, 2008 Howard CV, Small particles-big problems, Int. Lab. News, 34, 28-29, 2004 Jia G, Wang H, Yan L, Wang X, Pei R, Yan T, Zhao Y, Guo X., Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene, Environ. Sci. Technol., 39, 1378-83, 2005 Jia G, Wang H, Yan L, Wang X, Pei R, Yan T, Zhao Y, Guo X.Kim D, El-Shall H, Dennis D, Morey T, Interaction of PLGA nanoparticles with human blood constituents, Colloids Surf., B40, 83. J, 2005 Kim D., El-Shall, H., Dennis, D., Morey, T., Interaction of PLGA nanoparticles with human blood constituents. Colloids Surf. B 40, 83. J, 2005 Kostarelos K, Lacerda L, Pastorin G, Wu W, Wieckowski S, Luangsivilay J, Godefroy S, Pantarotto D, Briand JP, Muller S, Prato M, Bianco A., Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type, Nat. Nanotechnol. 2, 108-13, 2007 Kostarelos K, Lacerda L, Pastorin G, Wu W, Wieckowski S, Luangsivilay J, Godefroy S, Pantarotto D, Briand JP, Muller S, Prato M, Bianco A., Lewinski N, Colvin V, Drezek R., Cytotoxicity of nanoparticles, Small, 4, 26-49. Review, 2008 Lewinski N, Colvin V, Drezek R, Citotoxicity of Nanoparticles, Small, 4, 26-49, 2008 Li SQ, Zhu RR, Zhu H, Xue M, Sun XY, Yao SD, Wang SL., Nanotoxicity of TiO(2) nanoparticles to erythrocyte in vitro, Food Chem. Toxicol., 46, 3626- 3631, 2008 Maynard AD, Nanotechnology: Research Strategy for Adressing Risk Washington DC, Woodrow Wilson International Center for Scholars, 2006 Monteiro–Riviere NA, Inman AO, Challenges for assessing carbon nanomaterial toxicity to the skin, Carbon, 44, 1070–1078, 2006 Moore MN, Depledge MH, Readman JW, Leonard P, An integrated biomarker-based strategy for ecotoxicological evaluation of risk in environmental management, Mutat Res 552, 247–68, 2004 Moore MN, Do nanoparticles present ecotoxicological risks for the health of the aquatic environment?, Environment International 32, 967-976, 2006 Muller J, Huaux F, Moreau N, Misson P, Heilier JF, Delos M, Arras M, Fonseca A, Nagy JB, Lison D, Respiratory toxicity of multi-wall carbon nanotube., Toxicol. Appl. Pharmacol. 207, 221-231, 2005 Oberdörster E, Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass, Environ. Health Perspect., 113, 823-839, 2004 Oberdörster G, Oberdörster E, Oberdörster J., Nanotoxicology: an emerging discipline evolving from studies of ultrafine particle, Environ Health Perspect 113, 823-839, 2005 Rothen-Rutishauser BM, Schurch S, Haenni B, Kapp N, Gehr P, Interaction of fine and nanoparticles with red blood cells visualized with advanced microscopic technicques, Environ. Sci., Technol., 40, 4353 – 4359, 2006 Sayes CM, Warheit DB, Characterization of nanomaterials for toxicity assessment, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1, 660-670. Review, 2004 Thomas CL, Navid S, Robert DT, Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2); Implication for nanoparticle neurotoxicity, Environ. Sci. Technol., 40, 4346- 4352, 2006 Tian FR, Cui D, Schwarz H, Estrada GG, Kobayashi H., Cytotoxicity of single-wall carbon nanotubes on human fibroblasts, Toxicol. In vitro, 20, 1202- 1212, 2006 Usenko CY, Harper SL, Tanguay RL, In vivo evaluation of carbon fullerene toxicity using embryonic zebrafish, Carbon45, 1891-1898, 2007 Wang JX, Zhou GQ, Chen CY, Yu HW, Wang TC, Ma YM, Jia G, Gao YX, Li B, Sun J, Li YF, Zhao YL, Chai ZF, Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration, Toxicol. Lett., 168, 176- 185, 2007 Warheit DB, Webb TR, Reed KL, Frerichs S, Sayes CM, Acute toxicity and biodistribution of different sized titanium di8oxide particles in mice after oral administration, Toxicol. Lett., 168, 176-185 , 2007. Zhu S, Oberdörster E, Haasch ML, Toxicity of an engineered nanoparticle (fullerenes, C60)in two aquatic species, Daphnia and fathead minnow, Mar. Environ. Res., 62, 55-59, 2006 |
*Correspondence: | Bratosin D. |